
When creating your Help file, you might want to add new capabilities or change
the way Help works with your information. The following list shows some of the
ways to customize Help. You can:

n Add new menus and buttons to Help.
n Assign keyboard equivalents to custom Help features.
n Run other applications from the Help file.
n Change the title that appears in the Help window.
n Create a custom icon for the Help file.
n Create a custom How To Use Help file.

This chapter explains how to customize your Help file.

Windows Help uses menus to organize commands and buttons to provide
navigation controls for the Help file. To simplify the interface for your Help file,
you might want to use menus and buttons to provide quick access to Help file
features. Menus are used in almost all applications for Windows, and button bars
or tool bars are commonly used as well. If your users have any experience with
Windows, it’s likely they already understand how to use menus and button bars.

In addition to the standard menus and buttons, you can add custom menus, menu
items, and buttons, which can run standard Help macros or external commands
that you register with the Help file. You can design your Help file to change the
menu and button bar when the user opens the Help file or displays certain topics
during the Help session. Customizing the Help menu bar and button bar requires
you to use macros.

This section introduces Help menu and button-bar customization and discusses
how to use specific Help macros to make those changes. It assumes some
familiarity with Help macro syntax and usage, even though this information is

Customizing the Help File

___ Chapter 13

Defining Menus and Buttons

 Microsoft Windows Help Authoring Guide

covered in a later chapter. Use the material in this section to get an idea of the
kinds of changes you can make to Help menus and buttons. Then refer to Chapter
14, “Help Macros,” and Chapter 15, “Help Macro Reference,” for more
information about using specific macros.

Menu and Button Macros

Help displays a menu bar and a button bar in its main window. The menu and
button bars are not displayed in secondary windows. You can use the standard
menu and button bars as is, or you can define new menus and buttons to add to
the standard items. To define the menus, menu items, and buttons, you use Help
macros. Your Help file can change the menus, menu items, and buttons at any
time during a Help session.

You can reconfigure the menu or button bar at different times. For example, you
might:

n Display a new menu when the user opens the Help file.
n Change the menus to reflect a certain type of information contained

in a group of related topics.
n Change menu items to reflect options chosen by the user.

The menu and button bars are displayed only in the main window, and menu and
button macros must be run from the main window. For example, a topic might
have a macro that adds a button to the button bar. The button macro works only if
the topic is displayed in the main window. It won’t work if the topic is displayed
in a secondary window.

Properties of Menu Items and Buttons
Menu items and buttons have similar characteristics. They both run macros when
the user clicks them or presses a key combination, or mnemonic. Both buttons
and menu items can be disabled (made unavailable) and enabled (made available)
during the Help session.

Buttons and menu items share the following properties.

Customizing the Help File§ 13-3
Property Description

ID Specifies an internal name for the button or menu item that identifies
the button or menu item in Help macros; for example, to disable a
button, you specify the button ID with the DisableButton macro.

Text Specifies the text displayed on the button or menu item.

Mnemonic Specifies a keyboard alternative for the button or menu item. The
mnemonic is one of the characters in the button or menu text and is
identified by an ampersand (&) placed before the mnemonic character.

Menu-item mnemonics are available only when the menu is displayed,
but button mnemonics are available whenever the input focus is on the
main window.

Macro Specifies the Help macro or macros to run when the user chooses the
button or menu item.

Position Specifies the position of the menu item within a menu, or the position
of a button within the button bar. Position values are used only when a
menu item or button is displayed. All further references to the menu
item or button use the ID.

Suggested Uses for Menu Items and Buttons
Buttons are well-suited for displaying a limited number of frequently used
functions. Buttons let the user access a feature using a single key combination or
mouse click.

Menus are good for displaying larger collections of functions, especially when
those functions can be organized into logical groups. For example, a menu bar
might contain 25 menu items, but by dividing those items into six separate menus,
the application can avoid overwhelming the user with too much information.

 Microsoft Windows Help Authoring Guide

Help can place a check mark next to a menu item, but it cannot place a check
mark on a button. This makes menu items more suitable for setting and displaying
the status of user options with an “on or off” state.

Defining Menus

Help can display multiple drop-down menus containing several menu items.
Space considerations might preclude using more than eight or nine menus, and on
a 640 by 480 VGA screen, a drop-down menu can display about 20 menu items.
However, if you only consider the physical limitations, you may introduce serious
usability problems. For that reason, when designing custom menus take into
account both the physical and usability factors.

Help provides a series of macros for configuring the menu bar. Using these
macros, you can do the following:

n Add menus to the menu bar
n Add menu items to menus, at the end of the menu or in a specific

position
n Remove menu items
n Change menu item macros
n Disable or enable a menu item
n Add and remove check marks from menu items
n Assign accelerator keys to menu functions

The following sections describe how to use Help macros to perform each of these
tasks. For comprehensive information about using Help macros, see Chapter 14,
“Help Macros.” For information about how to assign accelerator keys to menu
and button functions, see “Defining Accelerator Keys,” later in this chapter.

Customizing the Help File§ 13-5
Note

Some menu macros don’t work when run from a topic displayed
in a secondary window. In those cases, you must run the macros from
the Help project file or from a topic displayed in the main window.

Using the Standard Menus

Windows Help provides a standard menu bar for use with Help files; this menu
bar displays this menu bar whenever you start Help. You must use the standard
menus in your Help file. The standard menu bar is shown in figure 13.1.

Graphic
You can access the standard menu functionality, as long as you use the specified
menu IDs. The standard Help menu has the following menus, menu items, IDs,
and macro assignments.

Menu / Item ID Macro Description

File menu mnu_file None1 None1

File Open mnu_open FileOpen Displays the Open dialog
box.

File Print mnu_print Print Prints the topic displayed
in the main window.

File Print
Setup

mnu_psetup PrinterSetup Displays the Print Setup
dialog box.

File Exit mnu_exit Exit Closes Help.

 Microsoft Windows Help Authoring Guide

Edit mnu_edit None1 None1

Edit Copy mnu_copy CopyDialog Displays the Copy dialog
box.

Edit Annotate mnu_annotate Annotate Displays the Annotate
dialog box.

Bookmark mnu_bookmark None1 None1

Bookmark
Define

mnu_bkdefine BookmarkDefine Displays the Bookmark
Define dialog box.

Bookmark list None2 None2 Lists the first nine
bookmarks defined in the
Help file. These items are
displayed only if
bookmarks are defined.

Bookmark
More

mnu_bkmore BookmarkMore Displays the Bookmark
dialog box for Help files
that have more than nine
bookmarks defined. This
menu item is displayed
only if ten or more
bookmarks are defined.

Help mnu_help None1 None1

Customizing the Help File§ 13-7Help How To
Use Help

mnu_helpon HelpOn Displays the How To Use
Help file in a new Help
window.

Help Always
On Top

mnu_ontop HelpOnTop Displays all Help
windows on top of other
application windows.

Help About mnu_about About Displays the About dialog
box.

1 Macros cannot be run directly from the menu bar, only from menu items displayed on drop-down
menus.

2 The bookmark list is controlled directly by Help and cannot be changed using macros.

Adding Menus

In Windows Help, menus don’t run macros; they just display a list of menu items
(or commands). Before defining menu items, you must define the menus. To add
a menu to the menu bar, you use the InsertMenu macro. This macro has the
following syntax:
InsertMenu("menu_id", "menu_text", menu_position)

For example, to insert a menu with the ID “mnu_options” and the text
“&Options” (the ampersand turns the letter O into the acceleration key), at the
third position on the menu bar, you’d use the following macro:
InsertMenu("mnu_options", "&Options", 2)

The menu_position value starts with zero as the first menu, so the third menu has
the value 2. When you insert a menu, all menus to the right of the insertion
position are moved to the right. Because the Bookmark menu is in the third
position before the insertion, the Options menu would now come after the Edit
menu but before the Bookmark menu (Figure 13.2).

 Microsoft Windows Help Authoring Guide
Graphic

Adding and Removing Menu Items

Menu items are displayed on menus, which appear when the user selects a menu
name on the menu bar. Menu items are associated with Help macros, so when the
user chooses a menu item, the Help macro is run.

Adding Menu Items
Help provides two macros for adding menu items, AppendItem and InsertItem.
As their names imply, the first macro adds a menu item to the end of a menu, and
the second macro inserts a menu item at a specific place on the menu.

Inserting Items

To add a menu item in a specific position, you use the InsertItem macro, which
has the following syntax:
InsertItem("menu_id", "item_id", "item_text", "item_macro", item_position)

For example, the following macro adds a Show Index Window menu item as the
first item on an Options menu:
InsertItem("mnu_options","item_showindex","Show &Index Window...", "JI(`index.hlp',
`idx_main')", 0)

By placing an ampersand (&) before the word Index of the menu item text, the
macro assigns the mnemonic character I to the menu item. Also notice the use of
the ellipses following the menu item text; this is a Windows convention that
indicates the menu item displays a dialog box.

In the next example, a more complex macro is added to an Options menu:
InsertItem("mnu_options","item_showindex","Show &Index Window",
"IfThenElse(IsMark(`show_index'),
`DeleteMark(`show_index')',
`SaveMark(`show_index')')",0)

When the user chooses the resulting menu item, the macro saves or deletes a
marker, depending on whether the marker is already set in the Help file.

Customizing the Help File§ 13-9
Note

You cannot insert menu items between or after the standard
items on the Bookmark menu (with the menu ID “mnu_bookmark”).
Help appends the standard items to any custom ones you’ve inserted.

Appending Items

The AppendItem macro uses the same parameters as the InsertItem macro, but
it omits the position parameter. Menu items created using AppendItem are added
to the end of the specified menu. The AppendItem macro can be easier to use in
the Help project file because, rather than having to specify position values, you
can just arrange the macros in the [CONFIG] section in the order you want the
menu items to appear. To change the order of the menu items, you just change the
order of the macros.

Removing Menu Items
To remove a menu item, use the following macro:
DeleteItem("item_id")

For example, to remove the Show Index Window menu item from the previous
example, you use the following macro:
DeleteItem("item_showindex")

Disabling and Enabling Menu Items

When you disable a menu item, the menu text changes to gray, and the menu
macro is made unavailable. To disable a menu item, use the following macro:
DisableItem("item_id")

For example, to disable the Options menu item, you use the following macro:
DisableItem("mnu_options")

The EnableItem macro activates a disabled macro. For example, to activate the
Copy Bitmap menu item, you use the following macro:
EnableItem("mnu_copybmp")

 Microsoft Windows Help Authoring Guide

Checking and Unchecking Menu Items

Many applications for Windows use check marks on menu items to indicate that
an option is set. Help provides two macros, CheckItem and UncheckItem, that
add and remove check marks from menu items. These macros have the following
syntax:
CheckItem("item_id")
UncheckItem("item_id")

For example, to add a check mark next to an item with the ID “item_showindex,”
you can use the following macro:
CheckItem("item_showindex")

In the example shown in “Adding Menu Items,” earlier in this chapter, a Help file
uses a menu macro that sets or removes a mark. The menu item would be more
effective if it displayed a check mark to indicate that the mark (and therefore the
option) was set. By adding CheckItem and UncheckItem macros to the menu
macro, the Help file will display a check mark at the appropriate times. The
following example shows the resulting InsertItem macro:
InsertItem("mnu_options", "item_showindex", "Show &Index Window",
"IfThenElse(IsMark(`show_index'),
`DeleteMark(`show_index');UncheckItem(`item_showindex')',
`SaveMark(`show_index');CheckItem(`item_showindex')')",0)

When the user chooses the resulting menu item, the macro saves or deletes a
marker, depending on whether the marker is already set in the Help file. It also
displays a check mark to indicate the state of the option.

Changing the Menu Item’s Function

Help lets you change the macro associated with a menu item. To change the
macro for an item, use the following macro:
ChangeItemBinding("item_id", "new_macro")

For example, to change the macro assigned to a menu item with the ID
“item_time,” you could use the following macro:
ChangeItemBinding("item_time", "ExecProgram(`clock', 0)")

In the example in the previous section, a Help file uses a check mark to indicate
whether an option is set. In the following example, the InsertItem() macro is
changed so the menu item changes its function when the user sets or clears the
option:

Customizing the Help File§ 13-11

InsertItem("mnu_options", "item_showindex", "Show &Index Window",
"IfThenElse(IsMark(`show_index'), `DeleteMark(`show_index');
ChangeItemBinding("item_showindex", "JumpContents(`index.hlp')")',
`SaveMark(`show_index');

ChangeItemBinding("item_showindex", "JumpID(`index.hlp', `sub_cont')")'), 0)

Help can display up to 22 buttons on the button bar. Using Help macros, you can
customize the button bar in the following ways:

n Add buttons to the button bar
n Remove buttons
n Disable or enable a button
n Change the macro associated with a button

The following sections describe how to use Help macros to perform each of these
tasks. For comprehensive information about Help macros, see Chapter 14, “Help
Macros,” and Chapter 15, “Help Macro Reference.”

Note

Some button macros don’t work when run from a topic
displayed in a secondary window. In those cases, you must run the
macros from a topic displayed in the main window.

Using the Standard Buttons

Help provides six buttons for use with Help files. The standard buttons provide
access to six commonly used Help macros. Four of the buttons are required, and
two are optional buttons in your Help file. The standard button bar is shown in
Figure 13.3.:

Graphic
You can access the standard button functionality if you use the specified button

Defining Buttons

 Microsoft Windows Help Authoring Guide

IDs. The standard buttons have the following IDs, macros, and functions.

Button ID Macro Description

Contents btn_contents Contents Displays the Contents topic, which
is the first topic in the Help file.

Index btn_search Search Displays the Search dialog box.

Go Back btn_back Back Jumps to the last topic the user
displayed in the main window.

History btn_history History Displays the History window.

<< (Browse
Previous)

btn_previous Prev Jumps to the previous topic in the
browse sequence.

>> (Browse
Next)

btn_next Next Jumps to the next topic in the
browse sequence.

How Help Disables Standard Buttons
In certain situations, Help automatically disables buttons with the following
button IDs.

Customizing the Help File§ 13-13
Button ID Disabled when

btn_back Using the Go Back button or the history list, the user returns to the
first topic in the history list.

btn_previous Help is displaying the first topic in the browse sequence.

btn_next Help is displaying the last topic in the browse sequence.

This behavior provides useful feedback to the users. If you define custom
Previous and Next buttons without using the button IDs listed in the preceding
table, Help cannot disable the buttons in the situations described above. To define
these buttons using custom paging devices, be sure to use the specified button IDs
in your CreateButton or InsertButton macros.

Adding and Removing Buttons

Buttons are displayed on the button bar. When the user chooses a button, Help
runs the macro associated with the button. You can add as many as 22 buttons to
the button bar, although your users might find it difficult to use a button bar
containing more than seven to nine buttons.

Help automatically sizes buttons to fit the text displayed on the button. You can’t
control the width of the buttons. You can have as many as 29 characters of text
on a button.

Creating Buttons
Help provides the CreateButton macro for adding a new button to the button bar.
The CreateButton macro has the following syntax:
CreateButton("button_id", "button_text", "macro")

 Microsoft Windows Help Authoring Guide

For example, the following macro creates an Options button:
CreateButton("btn_options", "&Options", "JumpId(`current.hlp', `option1_id')")

The button is added to the button bar after the standard buttons in the order that it
is listed in the [CONFIG] section of the Help project file. For example, the
Options button might be added before the Browse buttons and an “Exit” button:
[CONFIG]
CreateButton("btn_options", "&Options", "JumpId(`current.hlp', `option1_id')")
BrowseButtons()
CreateButton("E&xit", "Exit()")

Figure 13.4 shows the resulting button bar:

Graphic
Removing Buttons
To remove a button, use the following macro:
DestroyButton("button_id")

For example, to remove the Options button, you use the following macro:
DestroyButton("btn_options")

Disabling and Enabling Buttons

When you disable a button, the button text changes to gray and the button macro
is made unavailable. To disable a button, use the following macro:
DisableButton("button_id")

For example, to disable the Options button, you use the following macro:
DisableButton("btn_options")

The EnableButton macro activates a disabled button. For example, to activate
the Options button, you use the following macro:
EnableButton("btn_options")

Changing the Function of Buttons

Help lets you change the macro associated with a button. To change the macro
assigned to a button, use the following macro:
ChangeButtonBinding("button_id", "macro")

Customizing the Help File§ 13-15

For example, to change the Options button to jump to a topic with a context string
of “option2_id” (instead of “topic1_id”), you can use the following macro:

CreateButton("btn_options", "&Options", "JumpId(`current.hlp', `option2_id')")

You can assign keystrokes to macros used within your Help file. These
accelerator keys provide keyboard equivalents to macros displayed on menus or
the button bar. To define an accelerator key, use the following macro:
AddAccelerator(key, shift_state, "macro")

The key parameter specifies the numeric code for the key, and shift_state
specifies the required state of the CTRL, ALT, and SHIFT keys. For information on
these numeric codes, see Appendix A, “Windows Virtual-Key Codes.”

For example, you can define CTRL+C to be the Clock key. When the user presses
CTRL+C, your Help file displays the Windows Clock. The following macro
assigns CTRL+C as the accelerator key for the ExecProgram macro:
AddAccelerator(0x43, 2, "ExecProgram(`clock.exe', 0)")

To remove an accelerator key that you have assigned to a macro, use the
RemoveAccelerator macro. To remove an accelerator key, use the following
macro:
Remove Accelerator(key, shift_state)

The following macro removes CTRL+C as the accelerator key for the
ExecProgram macro:
RemoveAccelerator(0x43, 2)

For more information about assigning accelerator keys, see Chapter 15, “Help
Macro reference.”.

You can run a Windows-based application from a Help file using the

Defining Accelerator Keys

Running Applications from Help

 Microsoft Windows Help Authoring Guide

ExecProgram macro. You might find this useful for the following reasons:

n If your Help file describes an application, you can run that
application without forcing users to leave Help.

n You can use the Help file as a way to organize and execute various
applications.

n You can incorporate applications to augment the information
presented.

Once users quit the program, they return to Help and can continue reading
information.

ExecProgram runs the specified program much the same as using the Run
command from the File menu in Windows Program Manager. The .EXE and
other necessary files for the application must either be on the PATH or be in the
same directory as the .HPJ file for the Help file.

Usually, the ExecProgram macro is started when the user clicks a hot spot. But
you can also include the macro as part of a hypergraphic or as the action taken
when users choose a custom button or menu item.

The ExecProgram macro has the following syntax:

ExecProgram("command-line", display-state)
Command-line is the filename, enclosed in double quotation marks, of the
application you want to run. Display-state is a number that specifies how the
application window initially appears. Use 0 for normal size, 1 for minimized, and
2 for maximized.

In the following example, ExecProgram runs the Calendar application (in
normal size) whenever a user clicks a CALENDAR.BMP bitmap:
{bmc CALENDAR.BMP}!ExecProgram("calendar.exe", 0)

The application appears on top of the Help window, as shown in Figure 13.5.

Graphic

Customizing the Help File§ 13-17

For information about using the ExecProgram macro, see
Chapter 14, “Help Macros” for more information about how to include
macros in the Help file, see Chapter 15, “Help Macro Reference.” for
information about using the ExecProgram macro.

By default, Help displays the words “Windows Help” as the window title. This
title remains displayed as long as the Help file is open. To override this default
and assign a custom title to the Help file, you use the TITLE option in the
[OPTIONS] section of the Help project file.

The TITLE option can assign a new title with as many as 50 characters. The
TITLE option uses the following syntax:

TITLE=title
Title is the title you want displayed in the Help title bar.

For example, the following entry in the Help project file tells Help to display
Paintbrush as the title:
[OPTIONS]
TITLE=Paintbrush

This title appears in the Help window title bar, as shown in Figure 13.6.

Graphic
For more information abuot project file options, see Chapter 16, “The Help

Project File.”

To display your own icon instead of the standard Help icon when users minimize
the Help window with your Help file open, you can include the ICON option in

Creating a Custom Window Title

Creating a Custom Icon for Your Help

 Microsoft Windows Help Authoring Guide

the [OPTIONS] section of the Help project file:

ICON=icon-file

Icon-file is the name of an icon file you have created with the Microsoft
Windows Icon Editor or a similar tool. It can be an absolute path or a path
relative to the Help project directory.

For example, the following entry in the Help project file uses a custom icon:
[OPTIONS]
ICON=hyper.ico

This icon appears when the Help window is minimized, as shown in Figure 13.7.

Graphic
For more information abuot project file options, see Chapter 16, “The Help

Project File.”

Windows Help provides a default Help file (called WINHELP.HLP) that explains
to users how to use basic Help features. This default file, however, does not
include any information about what is displayed in the Help window. In other
words, it simply documents the Windows Help application. The default Help file
is provided for your convenience so that you can include it with your product if
you choose.

To provide users with more specific instructions about how to use your particular
Help file, you can create a custom How To Use Help file. This is especially
important if you customize Help in ways that make the default Help file
inadequate. Or, if you are using the Windows Help application as a delivery
medium for nonstandard Help files, you should certainly create a custom Help
file that users can read while viewing your information.

Creating the File

Windows Help treats the How To Use Help file as just another Help file. The

Creating a Custom How To Use Help

Customizing the Help File§ 13-19

process for creating the instructional Help file is identical to the process for
creating the main Help file: you create topic files, make links between topics, add
graphics, create a project file, and build the Help file using the Help compiler.

You can use the same Help features in your instructional Help file that you can
use in the main Help file. For example, you might:

n Display definitions of important terms in pop-up windows.
n Use hypergraphics to describe the information model you’re using.
n Add your own custom buttons that let users access information in the

file.

Users can take advantage of any features you add, as well as the standard Help
features, when looking for information in the instructional Help file.

Source Files
As previously mentioned, Windows Help provides a basic Help file named
WINHELP.HLP that you can customize for your own project. The following
topic files and graphics, which are used to build the basic How To Use Help file
are also included:

Filename Description

WINHELP.BAS Basic instructions to get users started using Help

WINHELP.BUT Explanations of the Windows Help buttons

WINHELP.CMD Explanation of the Windows Help menu commands

WINHELP.GLY Definitions of terms used in the Help file

 Microsoft Windows Help Authoring Guide

WINHELP.HOW Step-by-step instructions for using Help features

WINHELP.IDX Contents screen for the Help file

WINHELP.KBD Keyboard equivalents used in Help

WINHELP.HPJ Help project file used to build the Help file

BULLET.BMP Bullet symbol used in bulleted lists

DOIT.BMP Symbol used to indicate step-by-step instructions

HNDPOINT.BMP Picture of the Help hot-spot cursor

You can customize these files in any way that you want, or you can create your
own instructional file from scratch.

Customizing the Help File§ 13-21
Note

If you use these files, you should change the name of the Help
project file used to build the Help file so that your custom Help file
doesn’t overwrite the default Help file when you install your product on
a user’s machine. The standard Help file is used to display Help for all
other applications for Windows. You should also install your custom
Help file in the same directory as your main Help file.

Customizing the Help Menu

Users choose the How To Use Help command from the Help menu in the
Windows Help application. To change the name of this command to something
that more closely matches your instructional Help file, you can include the
following Help macros in the [CONFIG] section of your Help project file:
[CONFIG]
 .
 .
 .
SetHelpOnFile("hlpbasic.hlp")
DeleteItem("mnu_HelpOn")
InsertItem("mnu_help", "mnu_hlpbas", "&Custom Help", "JC(`hlpbasic.hlp')", 0)
AddAccelerator(0x70, 0, "JC(`hlpbasic.hlp')")

These macros perform the following actions:

n The SetHelpOnFile macro sets the custom Help file as
HLPBASIC.HLP for this Help file.

n The DeleteItem macro removes the default How To Use Help
command from the Help menu.

n The InsertItem macro adds the custom Help file (identified by
“mnu_hlpbas”) to the Help menu (“mnu_help”) as the first item,
before the Always On Top command.

n The JumpContents (or JC) macro in the InsertItem macro opens
the custom Help file, HLPBASIC.HLP, and jumps to the Contents
topic for that file.

n The AddAccelerator macro sets up the F1 key (hexadecimal code
0x70) as the keyboard accelerator for the custom Help command on
the Help menu. This accelerator key opens the custom Help file the

 Microsoft Windows Help Authoring Guide

same as if the user chooses the Help command.

For more information about any of the macros discussed in this example, see
Chapter 15, “Help Macro Reference.”

Adding Additional Items to the Help Menu
A Help menu may also include additional items. For example, it might include
items that describe the following Help topics:

n Tour of your Help file
n Quick Reference

You add additional menu items the same way as you added the main Help item:
by using the InsertItem macro. Assuming the Help file is named
HLPBASIC.HLP, the [CONFIG] section of HLPBASIC.HPJ might include the
following macros:
[CONFIG]
 .
 .
 .
InsertItem("mnu_help", "mnu_tour", "Help &Tour", "JI(`hlpbasic.hlp>tour', `tour_start')", 1)
AddAccelerator(27, 0, "CloseWindow(`tour')")
InsertItem("mnu_help", "mnu_qkref", "&Quick Reference", "JI(`hlpbasic.hlp', `ref_idx')", 2)
AddAccelerator(0x52, 5, "JI(`hlpbasic.hlp', `ref_idx')")

These macros perform the following actions:

n Create menu items named Help Tour and Quick Reference that
appear on the Help menu in the second and third positions.

n Specify which topic to display when users choose the commands: a
topic identified by the context string “tour_start” for the Help Tour
and a topic identified by the context string “ref_idx” for the Quick
Reference.

n Assign keyboard equivalents to each menu item: the ESC key to close
the Help Tour window and ALT+SHIFT+R to access the Quick
Reference.

Customizing the Help File§ 13-23

Adding a Custom Help Icon

As previously mentioned, you can create a separate icon for your instructional
Help file to distinguish it from the main Help file. To specify a custom icon,
insert an ICON option in the [OPTIONS] section of the project file for your Help
file, as in this example:
[OPTIONS]
 .
 .
 .
ICON=custom.ico

Ó 1993 Microsoft Corporation, All rights reserved

	Customizing the Help File
	Defining Menus and Buttons
	Defining Buttons
	Defining Accelerator Keys
	Running Applications from Help
	Creating a Custom Window Title
	Creating a Custom Icon for Your Help File
	Creating a Custom How To Use Help File
	n Add new menus and buttons to Help.
	n Assign keyboard equivalents to custom Help features.
	n Run other applications from the Help file.
	n Change the title that appears in the Help window.
	n Create a custom icon for the Help file.
	n Create a custom How To Use Help file.
	Menu and Button Macros
	n Display a new menu when the user opens the Help file.
	n Change the menus to reflect a certain type of information contained in a group of related topics.
	n Change menu items to reflect options chosen by the user.
	Properties of Menu Items and Buttons
	Suggested Uses for Menu Items and Buttons

	Defining Menus
	n Add menus to the menu bar
	n Add menu items to menus, at the end of the menu or in a specific position
	n Remove menu items
	n Change menu item macros
	n Disable or enable a menu item
	n Add and remove check marks from menu items
	n Assign accelerator keys to menu functions

	Using the Standard Menus
	Adding Menus
	Adding and Removing Menu Items
	Adding Menu Items
	Inserting Items
	Appending Items

	Removing Menu Items

	Disabling and Enabling Menu Items
	Checking and Unchecking Menu Items
	Changing the Menu Item’s Function
	n Add buttons to the button bar
	n Remove buttons
	n Disable or enable a button
	n Change the macro associated with a button

	Using the Standard Buttons
	How Help Disables Standard Buttons

	Adding and Removing Buttons
	Creating Buttons
	Removing Buttons

	Disabling and Enabling Buttons
	Changing the Function of Buttons
	n If your Help file describes an application, you can run that application without forcing users to leave Help.
	n You can use the Help file as a way to organize and execute various applications.
	n You can incorporate applications to augment the information presented.

	Creating the File
	n Display definitions of important terms in pop-up windows.
	n Use hypergraphics to describe the information model you’re using.
	n Add your own custom buttons that let users access information in the file.
	Source Files

	Customizing the Help Menu
	n The SetHelpOnFile macro sets the custom Help file as HLPBASIC.HLP for this Help file.
	n The DeleteItem macro removes the default How To Use Help command from the Help menu.
	n The InsertItem macro adds the custom Help file (identified by “mnu_hlpbas”) to the Help menu (“mnu_help”) as the first item, before the Always On Top command.
	n The JumpContents (or JC) macro in the InsertItem macro opens the custom Help file, HLPBASIC.HLP, and jumps to the Contents topic for that file.
	n The AddAccelerator macro sets up the F1 key (hexadecimal code 0x70) as the keyboard accelerator for the custom Help command on the Help menu. This accelerator key opens the custom Help file the same as if the user chooses the Help command.
	Adding Additional Items to the Help Menu
	n Tour of your Help file
	n Quick Reference
	n Create menu items named Help Tour and Quick Reference that appear on the Help menu in the second and third positions.
	n Specify which topic to display when users choose the commands: a topic identified by the context string “tour_start” for the Help Tour and a topic identified by the context string “ref_idx” for the Quick Reference.
	n Assign keyboard equivalents to each menu item: the ESC key to close the Help Tour window and ALT+SHIFT+R to access the Quick Reference.

	Adding a Custom Help Icon

